Constant-complexity Stochastic Simulation Algorithm with Optimal Binning
نویسندگان
چکیده
At the molecular level, biochemical processes are governed by random interactions between reactant molecules, and the dynamics of such systems are inherently stochastic. When the copy numbers of reactants are large, a deterministic description is adequate, but when they are small, such systems are often modeled as continuous-time Markov jump processes that can be described by the chemical master equation. Gillespie's Stochastic Simulation Algorithm (SSA) generates exact trajectories of these systems, but the amount of computational work required for each step of the original SSA is proportional to the number of reaction channels, leading to computational complexity that scales linearly with the problem size. The original SSA is therefore inefficient for large problems, which has prompted the development of several alternative formulations with improved scaling properties. We describe an exact SSA that uses a table data structure with event time binning to achieve constant computational complexity with respect to the number of reaction channels for weakly coupled reaction networks. We present a novel adaptive binning strategy and discuss optimal algorithm parameters. We compare the computational efficiency of the algorithm to existing methods and demonstrate excellent scaling for large problems. This method is well suited for generating exact trajectories of large weakly coupled models, including those that can be described by the reaction-diffusion master equation that arises from spatially discretized reaction-diffusion processes.
منابع مشابه
Well Placement Optimization Using Differential Evolution Algorithm
Determining the optimal location of wells with the aid of an automated search algorithm is a significant and difficult step in the reservoir development process. It is a computationally intensive task due to the large number of simulation runs required. Therefore,the key issue to such automatic optimization is development of algorithms that can find acceptable solutions with a minimum numbe...
متن کاملParallel Generation of t-ary Trees
A parallel algorithm for generating t-ary tree sequences in reverse B-order is presented. The algorithm generates t-ary trees by 0-1 sequences, and each 0-1 sequences is generated in constant average time O(1). The algorithm is executed on a CREW SM SIMD model, and is adaptive and cost-optimal. Prior to the discussion of the parallel algorithm a new sequential generation with O(1) average time ...
متن کاملA Collaborative Stochastic Closed-loop Supply Chain Network Design for Tire Industry
Recent papers in the concept of Supply Chain Network Design (SCND) have seen a rapid development in applying the stochastic models to get closer to real-world applications. Regaring the special characteristics of each product, the stracture of SCND varies. In tire industry, the recycling and remanufacturing of scraped tires lead to design a closed-loop supply chain. This paper proposes a two-st...
متن کاملAn Application of the Stochastic Optimal Control Algorithm (OPTCON) to the Public Sector Economy of Iran
In this paper we first describe the stochastic optimal control algorithm called ((OPTCON)). The algorithm minimizes an intertemporal objective loss function subject to a nonlinear dynamic system in order to achieve optimal value of control (or instrument) variables. Second as an application, we implemented the algorithm by the statistical programming system ((GAUSS)) to determine the optimal fi...
متن کاملA new stochastic 3D seismic inversion using direct sequential simulation and co-simulation in a genetic algorithm framework
Stochastic seismic inversion is a family of inversion algorithms in which the inverse solution was carried out using geostatistical simulation. In this work, a new 3D stochastic seismic inversion was developed in the MATLAB programming software. The proposed inversion algorithm is an iterative procedure that uses the principle of cross-over genetic algorithms as the global optimization techniqu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 143 7 شماره
صفحات -
تاریخ انتشار 2015